
iOS SDK

1. Overview
List of supported payment methods

2.Requirements
2.1. Preparation
2.2. Development
2.3. Apple Pay

3.Installation
4.How to implement

4.1. Configuration
4.2. Authentication
4.3.Making a payment

4.3.1.Retrieve payment methods
4.3.2.Configure payment data
4.3.3.Show payment methods to the user
4.3.4.Checkout

4.4.Apple Pay
4.4.1.Configuration
4.4.2. Usage
4.4.3. iOS Human Interface Guidelines

4.5. WeChat Pay
4.6. PayPal

4.6.1 Register a URL Type
4.6.2 Redirection from PayPal
4.6.2 Update the AppDelegate

1. Overview

This is the documentation for the Axepta iOS SDK, which describes how to integrate payments in your iOS app.

The integration of the SDK is achieved by following a list of mandatory steps as described below:

Configuration of the merchant account in the Axepta system.
‘Axepta’ SDK pod installation.
Configuration of the SDK by inserting appropriate data retrieved from Axepta.
Configuration of preferable payment methods.
Authentication against the merchant backend.
Insertion of the payment data.
Checkout.
Handling of errors.

List of supported payment methods

The iOS SDK currently supports the following payment methods:

Credit Card
Direct Debit
PayPal
Apple Pay
WeChat

 Updated version will be provided end of 2023

For more information please check below chapter 4.3.

2.Requirements

Requirements in order to be able to use the SDK:

2.1. Preparation

Existing merchant account at Axepta
Merchant ID which you will receive from Axepta after creation of the merchant account
Backend and the belonging URL on merchant side to create and deliver a auth token (see chapter 4.2)
Website and the belonging URL’s on merchant side to forward and show the status of a payment process in case of a success, failure or a notify
event (see chapter 4.3.2).

2.2. Development

Installed cocoapods on the development machine - minimum version of cocoa pods is v1.1.1
Minimum required Xcode version is Xcode 8
iOS 10 as minimum deployment target

2.3. Apple Pay

Registered Apple Developer Account
Configured app in the Apple Developer center - activated for Apple Pay
Configured Apple Merchant ID
Certificate Signing-Request-File received from Axepta to create a Payment Processing Certificate

For more information see below in chapter 4.4 Apple Pay.

 3.Installation

If not already done, please install cocoapods. Here you will find the HowTo for that.https://guides.cocoapods.org/using/getting-started.html

When CocoaPods is installed, you need to activate your Xcode project for CocoaPods in the way that is described here: https://guides.cocoapods.org/using
/using-cocoapods.html

That means you have to create a Podfile inside the root directory of your project. You could do this with the following command within terminal in the root
folder of your project:

pod init

Then add the following line to your Podfile:

pod 'Axepta'

and run the following command within terminal in the root folder of your project:

pod install

If there comes an error like “ ` ” you should update your local CocoaPods repositories by[!] Unable to find a specification for `Axepta

pod update

After them try again

pod install

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/using-cocoapods.html
https://guides.cocoapods.org/using/using-cocoapods.html

Now you should have a configured xcode workspace with the integrated Axepta Framework. From now use the workspace file to open your Xcode project.

 4.How to implement

You can find a demo on https://github.com/axepta/Axepta-iOS

Try the demo in order to see how it works or use the following step by step guideline.

4.1. Configuration

Configure the SDK by importing the Axepta class and inserting the configuration parameters you receive from Axepta or parameter that merchantAppleID
you create yourself.

The class is the appropriate place to do so.AppDelegate

#import "AppDelegate.h"

#import <Axepta/Axepta.h>

@implementation AppDelegate

- (BOOL) application :(UIApplication *) application

didFinishLaunchingWithOptions :(NSDictionary *) launchOptions

{

AxeptaConfiguration.merchantID = @"YOUR_MERCHANT_ID";

AxeptaConfiguration.merchantAppleID = @"YOUR_APPLE_MERCHANT_ID";

return YES;

}

@end

4.2. Authentication

One requirement for the Mobile SDK is to insert the respective Merchant’s URL in order to be able to receive the auth token. The SDK is responsible to
retrieve then the token under the hood and use it appropriately when executing payment requests. An appropriate place to do that is inside AppDelegate
with the rest of Configuration. For more information, see the Axepta documentation.

https://github.com/axepta/Axepta-iOS

#import "AppDelegate.h"

#import <Axepta/Axepta.h>

@implementation AppDelegate

- (BOOL) application :(UIApplication *) application

didFinishLaunchingWithOptions :(NSDictionary *) launchOptions

{

AxeptaConfiguration.merchantID = @"YOUR_MERCHANT_ID";

AxeptaConfiguration.merchantAppleID = @"YOUR_APPLE_MERCHANT_ID";

AxeptaConfiguration.authURL = @"YOUR_AUTH_URL";

return YES;

}

@end

4.3.Making a payment

Assumed your app user inserted some products into the basket, typed the shipping address and now wants to make the payment - that means you want to
provide/show different payment methods to the user, so that he can choose from.

For that you need to ask the SDK for supported payment methods:

4.3.1.Retrieve payment methods

Currently the SDK returns all the available methods by calling the method in the following code snippet. Merchant can use only the methods they are
activated in Axepta.

[[Axepta sharedInstance] paymentMethodsOnSuccess :^(NSArray < AxeptaPaymentMethod *>

* paymentMethods) {

// set the methods as a data source

} onFailure :^(NSError * error) {

// do something with the error

}];

A good place to do this is a view controller class, which controls the view of the payment methods. So you could set this as data source for your view. In
the example app we are doing this in the classPaymentViewController

Now in order to proceed with a payment it is necessary to configure the appropriate payment data for each payment method.

4.3.2.Configure payment data

Every received payment method holds a instance. You only need to insert all merchant's necessary payment data for the checkout AxeptaPaymentData
(more details on PaymentData in Axepta documentation). A good way to do that is after the receive of the supported payment methods:

[[Axepta sharedInstance] paymentMethodsOnSuccess :^(NSArray < AxeptaPaymentMethod *>

* paymentMethods)

{

// set the methods as a data source

self . paymentMethods = paymentMethods;

for (AxeptaPaymentMethod * method in self . paymentMethods)

{

// Mandatory params

[method . paymentData setParamWithKey :@ "TransID" withValue :@ "YOUR_TRANS_ID"];

[method . paymentData setParamWithKey :@ "Amount" withValue :@ "YOUR_AMOUNT";

[method . paymentData setParamWithKey :@ "Currency" withValue :@ "YOUR_CURRENCY"];

[method . paymentData setParamWithKey :@ "URLSuccess" withValue :@ "YOUR_URL_SUCCESS"];

[method . paymentData setParamWithKey :@ "URLNotify" withValue :@ "YOUR_URL_NOTIFY"];

[method . paymentData setParamWithKey :@ "URLFailure" withValue :@ "YOUR_URL_FAILURE"];

if ([method. pmID isEqualToString : @ "pm_cc"]) {

[method. paymentData setParamWithKey : @ "MsgVer" withValue :

@ "YOUR_MSGVER"];

}

// Url sucess, failure of paypal may be different from other payments

if ([method. pmID isEqualToString : @ "pm_paypal"]) {

[method . paymentData setParamWithKey :@ "URLSuccess"

withValue :@ "YOUR_URL_SUCCESS_PAYPAL"];

[method . paymentData setParamWithKey :@ "URLFailure"

withValue :@ "YOUR_URL_FAILURE_PAYPAL"];

} else {

[method . paymentData setParamWithKey :@ "URLSuccess" withValue :@ "YOUR_URL_SUCCESS"];

[method . paymentData setParamWithKey :@ "URLFailure" withValue :@ "YOUR_URL_FAILURE"];

}

// Optional params

[method . paymentData setParamWithKey :@ "RefNr" withValue :@ "YOUR_REF_NR"];

[method . paymentData setParamWithKey :@ "OrderDesc" withValue :@ "YOUR_ORDER_DESC"];

[method . paymentData setParamWithKey :@ "AddrCity" withValue :@ "YOUR_ADDR_CITY"];

[method . paymentData setParamWithKey :@ "FirstName" withValue :@ "YOUR_FIRST_NAME"];

[method . paymentData setParamWithKey :@ "LastName" withValue :@ "YOUR_LAST_NAME"];

[method . paymentData setParamWithKey :@ "AddrZip" withValue :@ "YOUR_ADDR_ZIP"];

[method . paymentData setParamWithKey :@ "AddrStreet" withValue :@ "YOUR_ADDR_STREET"];

[method . paymentData setParamWithKey :@ "AddrState" withValue :@ "YOUR_ADDR_STATE"];

[method . paymentData setParamWithKey :@ "Phone" withValue :@ "YOUR_PHONE"];

[method . paymentData setParamWithKey :@ "eMail" withValue :@ "YOUR_EMAIL"];

[method . paymentData setParamWithKey :@ "ShopID" withValue :@ "YOUR_SHOP_ID"];

[method . paymentData setParamWithKey :@ "Subject" withValue :@ "YOUR_SUBJECT"];

}

} onFailure :^(NSError * error) {

// do something with the error

}];

The values of and will be validated during the checkout process. So you have to ensure that you are using valid data.Amount Currency

The currency is the currency you want to use you for the payment. You have to use three characters for currency code (DIN/ISO 4217), e.g. “EUR”.

The amount is the lowest unit of the currency you are using. That means if you are using EUR as currency, the amount needs to be in cents, e.g. an
amount of 100 is 1 EUR.

URLSuccess and are the URL’s to which the SDK redirect the status of a payment process. These URL’s normally point to a HTML site on URLFailure
your merchant backend toshow the status to the user of your app.

Attention

Currently iOS (especially the mobile Safari browser which is used by the SDK) doesn't support the execution of requests against a HTTP/2 backend which
uses Let’s Encrypt SSL certificates. For more infromation see https://community.letsencrypt.org/t/letsencrypt-cert-not-working-for-safari-with-http-2/25576/5

That means, when your merchant backend uses HTTP/2 (e.g. NodeJS) in combination with a Let’s Encrypt certificate to show the success or failure status,
this SDK is not able to do that.
You should disable HTTP/2 or use another SSL certificate on your merchant backend.

For the rest of the parameters you should take a look into the Axepta documentation . Some of the parameters need to be defined by you and are
mandatory.

Now you know the available payment methods and you have configured them. It’s time to show the payment methods to the user.

4.3.3.Show payment methods to the user

The object is a value object retrieved from the SDK with the above described method. It contains all vital information regarding a AxeptaPaymentMethod
payment method needed from the SDK to show the respective payment form and complete a transaction. In addition it contains a and localizedDescription
an image .

In the demo project, the payment methods are presented in a tableView, including ApplePay. In the following code snippet is demonstrated the population
of a cell, providing a title and an image of the respective payment method.

PaymentMethodTableViewCell * cell = [self . tableView

dequeueReusableCellWithIdentifier :@ "PaymentMethodTableViewCell" forIndexPath : indexPath];

AxeptaPaymentMethod * paymentMethod = [[self paymentMethods]

objectAtIndex : indexPath . row];

cell . labelTitle . text = paymentMethod . localizedDescription;

[cell . paymentImageView setImage : paymentMethod . image];

4.3.4.Checkout

After the configuration of the SDK is completed and all necessary payment data are imported, you can proceed with the checkout for a selected payment
method.

Start the checkout by instantiating a object. The class is a top-level class that facilitates the payment procedure. It is AxeptaCheckout AxeptaCheckout
responsible for validating payment data and instantiating a object when a new payment is triggered by passing the AxeptaCheckoutViewController
respective including the .paymentMethod paymentData

AxeptaCheckout * checkout = [[AxeptaCheckout alloc] init];

https://community.letsencrypt.org/t/letsencrypt-cert-not-working-for-safari-with-http-2/25576/5

Proceed with the checkout by presenting a which is a subclass of UIViewController encapsulating all the views’ stack.AxeptaCheckoutViewController

AxeptaPaymentMethod * paymentMethod = [[self paymentMethods]

objectAtIndex : indexPath . row];

[self . checkout instantiateCheckoutViewControllerWithPaymentMethod : paymentMethod

onSuccess :^(AxeptaCheckoutViewController

* checkoutViewController) {

checkoutViewController . delegate = self;

// show the new chekoutViewController

// maybe push it on navigation stack

} onFailure :^(NSError * error) {

// handle the error

}];

Receive results from checkout by conforming to and implementing its methods:AxeptaCheckoutViewControllerDelegate

- (void) checkoutDidAuthorizePaymentForPaymentData :(id < AxeptaPaymentDataProtocol >) paymentData

withResponse :(AxeptaPaymentRespose *) response

-

(void) checkoutDidFailToAuthorizePaymentForPaymentData :(id < AxeptaPaymentDataProtocol >) paymentData

withError :(NSError *) error withResponse :(AxeptaPaymentRespose *) response

- (void) checkoutDidCancelForPaymentData :(AxeptaPaymentData *) paymentData;

4.4.Apple Pay

4.4.1.Configuration

4.4.1.1. Apple Pay Developer page

Enable “Apple Pay” service for the appID.
Create “Merchant ID” (under “Identifiers”). It is recommended to use reverse domain style for the format of the “Merchant ID” that starts with
merchant (i.e. for bundleID: “com.exozet.AxeptaDemo” the merchantID should be something like “ .exozet.AxeptaDemo”).merchant.com
 This “Merchant ID” is passed to SDK as merchantAppleID parameter
For the creation of the Payment Processing Certificate, please follow the steps described in: https://docs.axepta.bnpparibas/display/DOCBNP
/English+documentation
For more information, please see Axepta Apple Pay documentation

*If you see a warning in Keychain Access that the certificate was signed by an unknown authority or that it has an invalid issuer, make sure you
have the WWDR intermediate certificate - G2 and the Apple Root CA - G2 installed in your keychain. You can download them from apple.com

./certificateauthority

4.4.1.2. XCode Project

http://merchant.com
https://docs.axepta.bnpparibas/display/DOCBNP/English+documentation
https://docs.axepta.bnpparibas/display/DOCBNP/English+documentation
http://apple.com/certificateauthority
http://apple.com/certificateauthority

To enable Apple Pay for your app in XCode, open the Capabilities pane. Select the switch in the Apple Pay row, and then select the merchant ID
you want the app to use.
Insert “ ” in the AppDelegate.Merchant ID

#import "AppDelegate.h"

#import <Axepta.h>

@implementation AppDelegate

- (BOOL) application :(UIApplication *) application

didFinishLaunchingWithOptions :(NSDictionary *) launchOptions

{

AxeptaConfiguration . merchantAppleID = @ "YOUR_MERCHANT_ID";

return YES;

}

@end

4.4.1.3. Testing Apple Pay transactions

Use the environment to test your transactions with test payment cards.Apple Pay Sandbox

 In iTunes Connect, create a test account. This account works for both App Store and Apple Pay testing.

 On a valid test device, log into iCloud using the test account.

 In the Wallet app, add a new card using manual entry.

4.4.2. Usage

4.4.2.1. Payment data

As described in 4.3.2 you should have configured the Apple pay payment data parameters.

4.4.2.2. Present PKPaymentAuthorizationViewController

Start Apple Pay by instantiating a object. The class is a top-level class that facilitates the Apple Pay payment procedure. AxeptaApplePay AxeptaApplePay
It is responsible for validating payment data and instantiating a object when a new payment is triggered by passing PKPaymentAuthorizationViewController
the respective and .paymentData paymentMethod

AxeptaApplePay * applePay = [[AxeptaApplePay alloc] init];

applePay . delegate = self;

Setup objects:PKPaymentSummaryItem

https://developer.apple.com/apple-pay/sandbox-testing/

PKPaymentSummaryItem * paymentSummaryItem1 = [[PKPaymentSummaryItem alloc] init];

paymentSummaryItem1 . label = @ "SUMMARY_ITEM_1_LABEL";

paymentSummaryItem1 . amount = 'SUMMARY_ITEM_1_AMOUNT';

PKPaymentSummaryItem * paymentSummaryItem2 = [[PKPaymentSummaryItem alloc] init];

paymentSummaryItem2 . label = @ "SUMMARY_ITEM_2_LABEL";

paymentSummaryItem2 . amount = 'SUMMARY_ITEM_2_AMOUNT';

PKPaymentSummaryItem * paymentSummaryItemTotal = [[PKPaymentSummaryItem alloc] init];

paymentSummaryItemTotal . label = @ "Total";

paymentSummaryItemTotal . amount = 'TOTAL_AMOUNT';

Present the :PKPaymentAuthorizationViewController

AxeptaPaymentMethod * applePayPaymentMethod = [[Axepta sharedInstance]

paymentMethodForID : @ "pm_applepay"];

NSArray * supportedNetworks = @[PKPaymentNetworkVisa , PKPaymentNetworkMasterCard ,

PKPaymentNetworkAmex , PKPaymentNetworkDiscover];

[self . applePay

instantiatePKPaymentAuthorizationViewControllerWithPaymentMethod : self . paymentData

withPaymentSummaryItems : /*your array with PaymentSummaryItems*/

withSupportedNetworks : supportedNetworks

withRequiredShippingAddressFields : self . selectedPKShipping

paymentAuthorizationViewController :^(PKPaymentAuthorizationViewController

* applePayViewController) {

// show apples pay view controller

[self presentViewController : applePayViewController

animated : true

completion : nil];

} onFailure :^(NSError * error) {

// handle the error

}];

AxeptaApplePayDelegate

Implement protocol’s methods in order to get notified of navigation actions and on ApplePay payment’s result:AxeptaApplePayDelegate

- (void) applePayDidDismiss {

}

-

(void) applePayDidAuthorizePaymentForPaymentData :(id < AxeptaPaymentDataProtocol >) paymentDa

ta withResponse :(AxeptaPaymentRespose *) response {

}

-

(void) applePayDidFailToAuthorizePaymentForPaymentData :(id < AxeptaPaymentDataProtocol >) pay

mentData withError :(NSError *) error withResponse :(AxeptaPaymentRespose *) response {

}

- (void) applePayPaymentDidSelectPaymentMethod :(PKPaymentMethod *) paymentMethod

completion :(void (^)(NSArray < PKPaymentSummaryItem *> *)) completion {

}

- (void) applePayPaymentDidSelectShippingContact :(PKContact *) contact completion :(void

(^)(PKPaymentAuthorizationStatus , NSArray < PKPaymentSummaryItem *> *)) completion {

}

4.4.3. iOS Human Interface Guidelines

The UI components and interactions with ApplePay should follow Apple’s iOS Human Interface Guidelines. Please read the official documentation
provided by Apple.

4.5. WeChat Pay

For making payments with WeChat developer should use WeChat class with the public method: .startPaymentWithPaymentData

AxeptaWeChat *weChat = [[AxeptaWeChat alloc] init];

[weChat startPaymentWithPaymentData :paymentMethod

success :^(NSData *data) {

} failure :^(NSError *error) {

}];

4.6. PayPal

Developer first should declare the scheme that he will use to return to the merchant App.

This should be done as following:

4.6.1 Register a URL Type

1. In XCode, click on your project in the Project Navigator and navigate to App Target > Info > URL Types

2. Click [+] to add a new URL type

3. Under URL Schemes, create a URL scheme that your app will respond to. The scheme must start with your app’s Bundle ID and dedicated for use with
your PayPal integration.

Example custom url:

com.merchant.MerchantApp.PayPalReturn

4.6.2 Redirection from PayPal

For this payment method, the is used. To get back from the to your app after payment is done (or canceled), you SafariViewController SafariViewController
have to redirect to a custom uri from your merchant backend.

The flow after payment is done/canceled:

 Axepta will call your merchant backend using URLSuccess/URLFailure you specified.
 On your merchant backend you have to redirect from your URLSuccess/URLFailure to the custom uri to get back to our app, e.g.:

 URLSuccess com.merchant.MerchantApp.PayPalReturn://return
 URLFailure com.merchant.MerchantApp.PayPalReturn://cancel

It is important to use the values and as path segments for success and failure.return cancel

4.6.2 Update the AppDelegate

To respond to requests made to the custom URL type, the application openURL method must be implemented in the application delegate. The openURL
method should send a notification to Axepta in order to complete or cancel the PayPal checkout. The notification keys must be same as follows:

PayPalReturn://return
PayPalReturn://cancel

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url

sourceApplication:(NSString *)sourceApplication

annotation:(id)annotation {

if ([url. scheme localizedCaseInsensitiveCompare : @"com.merchant.MerchantApp.PayPalReturn"]

== NSOrderedSame) {

if ([url. host localizedCaseInsensitiveCompare : @"return"] == NSOrderedSame) {

NSNotificationCenter * nc = [NSNotificationCenter defaultCenter];

[nc postNotificationName : @"completePayPalCheckout" object : self userInfo : nil];

}

else {

NSNotificationCenter * nc = [NSNotificationCenter defaultCenter];

[nc postNotificationName : @"cancelPayPalCheckout" object : self userInfo : nil];

}

NSLog (@"%@" , url. host);

return YES ;

}

return NO ;

}

Important note : Developer should add to main project -l" " under the Build settings Other linker flags the Magnes library used by Axepta.PPRiskComponent

Since the Magnes library requires the location to send the payload risk to PayPal developer should activate it under info.plist by adding Privacy - Location
 and some description text.When In Use Usage Description

To init PayPal and call the payment method developer should use the following code:

AxeptaayPal *payPal = [[AxeptaayPal alloc] init];

[payPal startPaypalPay :paymentMethod

success :^(NSData *data) {

//Handle the succes

} failure :^(NSError *error) {

//Handle the failure

}];

	iOS SDK

